411 research outputs found

    The Convergence of Digital-Libraries and the Peer-Review Process

    Full text link
    Pre-print repositories have seen a significant increase in use over the past fifteen years across multiple research domains. Researchers are beginning to develop applications capable of using these repositories to assist the scientific community above and beyond the pure dissemination of information. The contribution set forth by this paper emphasizes a deconstructed publication model in which the peer-review process is mediated by an OAI-PMH peer-review service. This peer-review service uses a social-network algorithm to determine potential reviewers for a submitted manuscript and for weighting the relative influence of each participating reviewer's evaluations. This paper also suggests a set of peer-review specific metadata tags that can accompany a pre-print's existing metadata record. The combinations of these contributions provide a unique repository-centric peer-review model that fits within the widely deployed OAI-PMH framework.Comment: Journal of Information Science [in press

    C2M: Configurable Chemical Middleware

    Get PDF
    One of the vexing problems that besets concurrent use of multiple, heterogeneous resources is format multiplicity. C2M aims to equip scientists with a wrapper generator on their desktop. The wrapper generator can build wrappers, or converters that can convert data from or into different formats, from a high-level description of the formats. The language in which such a high-level description is expressed is easy enough for scientists to be able to write format descriptions at minimal cost. In C2M, wrappers and documentation for human reading are automatically obtained from the same user-supplied specifications. Initial experiments demonstrate that the idea can, indeed, lead to the advent of usergoverned wrapper generators. Future research will consolidate the code and extend the approach to a realistic variety of formats

    Electrophysiologic testing aids diagnosis and subtyping of myoclonus

    Get PDF
    OBJECTIVE: To determine the contribution of electrophysiologic testing in the diagnosis and anatomical classification of myoclonus. METHODS: Participants with a clinical diagnosis of myoclonus were prospectively recruited, each undergoing a videotaped clinical examination and battery of electrophysiologic tests. The diagnosis of myoclonus and its subtype was reviewed after 6 months in the context of the electrophysiologic findings and specialist review of the videotaped clinical examination. RESULTS: Seventy-two patients with myoclonus were recruited. Initial clinical anatomical classification included 25 patients with cortical myoclonus, 7 with subcortical myoclonus, 2 with spinal myoclonus, and 15 with functional myoclonic jerks. In 23 cases, clinical anatomical classification was not possible because of the complexity of the movement disorder. Electrophysiologic testing was completed in 66, with agreement of myoclonus in 60 (91%) and its subtype in 28 (47%) cases. Subsequent clinical review by a movement disorder specialist agreed with the electrophysiologic findings in 52 of 60; in the remaining 8, electrophysiologic testing was inconclusive. CONCLUSIONS: Electrophysiologic testing is an important additional tool in the diagnosis and anatomical classification of myoclonus, also aiding in decision-making regarding therapeutic management. Further development of testing criteria is necessary to optimize its use in clinical practice

    Low prevalence of non-typable Methicillin-resistant Staphylococcus aureus in meat products in The Netherlands

    Get PDF
    Recently, a new clone of methicillin resistant Staphylococcus (S.) aureus (MRSA) emerged in the Netherlands that was related to pigfarming. A survey in pigs showed that nearly 40% carried this new clone. This new type is characterised by bemg untypable with pulsed field gel electrophoresis (PFGE). This study was undertaken to determme the prevalence and genetic relationship of S.aureus and MRSA in meal products

    Pontocerebellar hypoplasia due to bi-allelic variants in MINPP1

    Get PDF
    Pontocerebellar hypoplasia (PCH) describes a group of rare heterogeneous neurodegenerative diseases with prenatal onset. Here we describe eight children with PCH from four unrelated families harboring the homozygous MINPP1 (NM_004897.4) variants; c.75_94del, p.(Leu27Argfs*39), c.851 C > A, p.(Ala284Asp), c.1210 C > T, p.(Arg404*), and c.992 T > G, p.(Ile331Ser). The homozygous p.(Leu27Argfs*39) change is predicted to result in a complete absence of MINPP1. The p.(Arg404*) would likely lead to a nonsense mediated decay, or alternatively, a loss of several secondary structure elements impairing protein folding. The missense p.(Ala284Asp) affects a buried, hydrophobic residue within the globular domain. The introduction of aspartic acid is energetically highly unfavorable and therefore predicted to cause a significant reduction in protein stability. The missense p.(Ile331Ser) affects the tight hydrophobic interactions of the isoleucine by the disruption of the polar side chain of serine, destabilizing the structure of MINPP1. The overlap of the above-mentioned genotypes and phenotypes is highly improbable by chance. MINPP1 is the only enzyme that hydrolyses inositol phosphates in the endoplasmic reticulum lumen and several studies support its role in stress induced apoptosis. The pathomechanism explaining the disease mechanism remains unknown, however several others genes of the inositol phosphatase metabolism (e.g., INPP5K, FIG4, INPP5E, ITPR1) are correlated with phenotypes of neurodevelopmental disorders. Taken together, we present MINPP1 as a novel autosomal recessive pontocerebellar hypoplasia gene

    Pontocerebellar hypoplasia due to bi-allelic variants in MINPP1.

    Get PDF
    Pontocerebellar hypoplasia (PCH) describes a group of rare heterogeneous neurodegenerative diseases with prenatal onset. Here we describe eight children with PCH from four unrelated families harboring the homozygous MINPP1 (NM_004897.4) variants; c.75_94del, p.(Leu27Argfs*39), c.851 C > A, p.(Ala284Asp), c.1210 C > T, p.(Arg404*), and c.992 T > G, p.(Ile331Ser). The homozygous p.(Leu27Argfs*39) change is predicted to result in a complete absence of MINPP1. The p.(Arg404*) would likely lead to a nonsense mediated decay, or alternatively, a loss of several secondary structure elements impairing protein folding. The missense p.(Ala284Asp) affects a buried, hydrophobic residue within the globular domain. The introduction of aspartic acid is energetically highly unfavorable and therefore predicted to cause a significant reduction in protein stability. The missense p.(Ile331Ser) affects the tight hydrophobic interactions of the isoleucine by the disruption of the polar side chain of serine, destabilizing the structure of MINPP1. The overlap of the above-mentioned genotypes and phenotypes is highly improbable by chance. MINPP1 is the only enzyme that hydrolyses inositol phosphates in the endoplasmic reticulum lumen and several studies support its role in stress induced apoptosis. The pathomechanism explaining the disease mechanism remains unknown, however several others genes of the inositol phosphatase metabolism (e.g., INPP5K, FIG4, INPP5E, ITPR1) are correlated with phenotypes of neurodevelopmental disorders. Taken together, we present MINPP1 as a novel autosomal recessive pontocerebellar hypoplasia gene

    Gray matter imaging in multiple sclerosis: what have we learned?

    Get PDF
    At the early onset of the 20th century, several studies already reported that the gray matter was implicated in the histopathology of multiple sclerosis (MS). However, as white matter pathology long received predominant attention in this disease, and histological staining techniques for detecting myelin in the gray matter were suboptimal, it was not until the beginning of the 21st century that the true extent and importance of gray matter pathology in MS was finally recognized. Gray matter damage was shown to be frequent and extensive, and more pronounced in the progressive disease phases. Several studies subsequently demonstrated that the histopathology of gray matter lesions differs from that of white matter lesions. Unfortunately, imaging of pathology in gray matter structures proved to be difficult, especially when using conventional magnetic resonance imaging (MRI) techniques. However, with the recent introduction of several more advanced MRI techniques, the detection of cortical and subcortical damage in MS has considerably improved. This has important consequences for studying the clinical correlates of gray matter damage. In this review, we provide an overview of what has been learned about imaging of gray matter damage in MS, and offer a brief perspective with regards to future developments in this field
    corecore